EL 50

Versterkerpenthode voor balans-eindtrappen

De EL 50 is een penthode met een maximum anodedissipatie van 18 W. Deze buis werd speciaal voor toepassing in balans-eindtrappen ontwikkeld. Twee van deze buizen in balansschakeling klasse A/B kunnen bij de maximum anodespanning van 800 V een vermogen van 84 W leveren. Doordat de anodeaansluiting op den ballon is uitgevoerd, kan een zoo hoog anodespanning worden toegepast, zonder dat men speciale maatregelen behoeft te treffen. Bovendien is de EL 50 door den vorm van de L_a/V_g karakteristiek betrekkelijk ongevoelig voor electrische afwijkingen tusschen de beide voor den balanstrap vereischte buizen. De EL 50 kan, evenals de 4654, ook bij een voedingspanning van 425 V ($V_a = 400$ V, $V_{gb} = 425$ V) worden gebruikt. Het maximum vermogen, dat twee buizen bij automatische negatieve roosterspanning in dit geval kunnen leveren, bedraagt 50 W. Allereerst volgen de statische en dynamische gegevens van deze buis.

![Diagram](image)

GLOEIDRAADGEGEVENS

Gloeidraadvoeding: indirect, met wisselstroom; parallelvoeding.

Gloeispanning $V_f = 6.3$ V

Glocistroom $I_f = 1.35$ A

CAPACITEITEN

Anode-stuurrooster capaciteit $C_{ag1} < 0.8$ pF

![Diagram](image)
STATISCHE GEGEVENS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde 1</th>
<th>Waarde 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anodespanning</td>
<td>V_a</td>
<td>400 V</td>
</tr>
<tr>
<td>Schermroosterspanning</td>
<td>V_{gs}</td>
<td>425 V</td>
</tr>
<tr>
<td>Vangroosterspanning</td>
<td>V_{gs}</td>
<td>0 V</td>
</tr>
<tr>
<td>Anodestroom</td>
<td>I_a</td>
<td>45 mA</td>
</tr>
<tr>
<td>Schermroosterstroom</td>
<td>I_{gs}</td>
<td>5,5 mA</td>
</tr>
<tr>
<td>Neg. roosterspanning</td>
<td>V_{gs}</td>
<td>-33 V</td>
</tr>
<tr>
<td>Steilheid</td>
<td>S</td>
<td>6 mA/V</td>
</tr>
<tr>
<td>Inwendige weerstand</td>
<td>R_i</td>
<td>30 000 Ω</td>
</tr>
</tbody>
</table>

Fig. 4
Anodestroom als functie van de anodespanning bij $V_{gs} = 425$ V en met V_g als parameter (400 V instelling).

Fig. 5
Anodestroom als functie van de anodespanning bij $V_{gs} = 400$ V en met V_g als parameter (800 V instelling).
DYNAMISCHE GEGEVENS voor toepassing van twee buizen EL 50 in klasse A/B instelling met automatische negatieve roosterspanning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde 1</th>
<th>Waarde 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anodespanning</td>
<td>V_a</td>
<td>400 V</td>
</tr>
<tr>
<td>Schermroosterspanning</td>
<td>V_{gs}</td>
<td>425 V</td>
</tr>
<tr>
<td>Vangroosterspanning</td>
<td>V_{gs}</td>
<td>0 V</td>
</tr>
<tr>
<td>Kathodeweerstand</td>
<td>R_k</td>
<td>315 Ω</td>
</tr>
<tr>
<td>Anoderustroom</td>
<td>$I_{an}(V_{gs}=0)$</td>
<td>2 x 45 mA</td>
</tr>
<tr>
<td>Anodestroom bij max. modulatie</td>
<td>$I_a(W_o=\text{max})$</td>
<td>2 x 52,5 mA</td>
</tr>
<tr>
<td>Schermrooster-rustroom</td>
<td>$I_{gs}(V_{gs}=0)$</td>
<td>2 x 5,5 mA</td>
</tr>
<tr>
<td>Schermroosterstroom bij max. modulatie</td>
<td>$I_{gs}(W_o=\text{max})$</td>
<td>2 x 19 mA</td>
</tr>
<tr>
<td>Gunstigste aanpassingsimpedantie tussen de beide anoden</td>
<td>R_{an}'</td>
<td>9000 Ω</td>
</tr>
<tr>
<td>Max. geleverd vermogen</td>
<td>$W_o\text{ max}$</td>
<td>30 W</td>
</tr>
<tr>
<td>Totale vervorming</td>
<td>d_{tot}</td>
<td>10%</td>
</tr>
<tr>
<td>Vereischte roosterwisselspanning</td>
<td>V_{gs}</td>
<td>25 V</td>
</tr>
</tbody>
</table>

DYNAMISCHE GEGEVENS voor toepassing van twee buizen EL 50 in klasse A/B instelling met vaste negatieve roosterspanning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde 1</th>
<th>Waarde 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anodespanning</td>
<td>V_a</td>
<td>400 V</td>
</tr>
<tr>
<td>Schermroosterspanning</td>
<td>V_{gs}</td>
<td>425 V</td>
</tr>
<tr>
<td>Vangroosterspanning</td>
<td>V_{gs}</td>
<td>0 V</td>
</tr>
<tr>
<td>Neg. roosterspanning</td>
<td>V_{gs}</td>
<td>-35 V</td>
</tr>
<tr>
<td>Anoderustroom</td>
<td>$I_{an}(V_{gs}=0)$</td>
<td>2 x 25 mA</td>
</tr>
<tr>
<td>Anodestroom bij max. modulatie</td>
<td>$I_a(W_o=\text{max})$</td>
<td>2 x 95 mA</td>
</tr>
<tr>
<td>Schermrooster-rustroom</td>
<td>$I_{gs}(V_{gs}=0)$</td>
<td>2 x 2,5 mA</td>
</tr>
<tr>
<td>Schermroosterstroom bij max. modulatie</td>
<td>$I_{gs}(W_o=\text{max})$</td>
<td>2 x 22 mA</td>
</tr>
<tr>
<td>Gunstigste aanpassingsimpedantie tussen beide anoden</td>
<td>R_{an}'</td>
<td>5000 Ω</td>
</tr>
<tr>
<td>Max. geleverd vermogen</td>
<td>$W_o\text{ max}$</td>
<td>50 W</td>
</tr>
<tr>
<td>Totale vervorming</td>
<td>d_{tot}</td>
<td>3,4%</td>
</tr>
<tr>
<td>Vereischte roosterwisselspanning</td>
<td>V_{gs}</td>
<td>25 V</td>
</tr>
</tbody>
</table>

![Diagram](image)

Fig. 6. Anodestroom I_a, schermroosterstroom I_{gs} en vervorming d als functie van het geleverde vermogen W_o van twee in balans geschakelde buizen EL 50 met automatische negatieve roosterspanning en bij $V_a = 400$ V, $V_{gs} = 425$ V en $R_{an}' = 9000$ Ω.
Fig. 7
Anodecurrent I_a, screenroostercurrent I_{G5} and total distortion d_{tot} as function of the power input W_0 of two in balans connected tubes EL 50 at constant negative roosterspanning and with $V_a = 400$ V, $V_{G5} = 425$ V, $V_{E5} = -35$ V and $R_{an} = 5000$ Ω.

Fig. 8
Maximum power output W_0 as function of the load impedance R_{an} for two in balans connected tubes EL 50 at constant negative roosterspanning and with $V_a = 400$ V, $V_{G5} = 425$ V and $V_{E5} = -35$ V. The dashed line $W_{max}(+ I_{G5})$ shows the maximum power output as a function of R_{an}.

Fig. 9
Anodecurrent I_a, screenroostercurrent I_{G5} and total distortion d_{tot} as function of the power input W_0 of two in balans connected tubes EL 50 at constant negative roosterspanning and with $V_a = 400$ V, $V_{G5} = 400$ V, $V_{E5} = -37.5$ V, and $R_{an} = 16000$ Ω.

185
Fig. 10 Maximum geleverd vermogen W_0 als functie van de belastingimpedantie R_{oa} voor twee in balans geschakelde bunits EL 50 met vaste negatieve roosterspanning en bij $V_a = 800$ V, $V_{gs} = 400$ V, en $V_{ds} = -37.5$ V. De gestippelde lijn W_{max} (+ I_{gs}) stelt de grens voor, waarbij de buis juist tot het eindpunt van roosterstroom wordt gemoduleerd. In dit geval zeven de maximum anodendissipatie echter worden overschreden.

GRENSWAARDEN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anodespanning in koud toestand</td>
<td>V_{se}</td>
</tr>
<tr>
<td>Anodespanning</td>
<td>V_a</td>
</tr>
<tr>
<td>Anodedissipatie</td>
<td>W_a</td>
</tr>
<tr>
<td>Anodedissipatie tijdens keuring</td>
<td>W_{at}</td>
</tr>
<tr>
<td>Schermroosterspanning in koud toestand</td>
<td>V_{rso}</td>
</tr>
<tr>
<td>Schermroosterspanning</td>
<td>V_{r2}</td>
</tr>
<tr>
<td>Schermroosterdissipatie ($V_{gel} = 0$ V)</td>
<td>W_{r2}</td>
</tr>
<tr>
<td>Schermroosterdissipatie ($W_a = max.$)</td>
<td>W_{r2}</td>
</tr>
<tr>
<td>Kathodestroom</td>
<td>I_k</td>
</tr>
<tr>
<td>Beginpunt van roosterstroom</td>
<td>V_{gl}</td>
</tr>
<tr>
<td>Max. uitwendige weerstand in de roosterketen</td>
<td>R_{glk}</td>
</tr>
<tr>
<td>Max. uitwendige weerstand in de roosterketen</td>
<td>R_{glk}</td>
</tr>
<tr>
<td>Max. uitwendige weerstand tusschen gloedraad en kathode</td>
<td>R_{fk}</td>
</tr>
<tr>
<td>Max. spanning tusschen gloedraad en kathode</td>
<td>V_{fkw}</td>
</tr>
</tbody>
</table>

V_{se} = max. 1600 V
V_a = max. 800 V
W_a = max. 18 W
W_{at} = max. 22 W
V_{rso} = max. 1000 V
V_{r2} = max. 425 V
W_{r2} = max. 3 W
W_{r2} = max. 10 W
I_k = max. 120 mA
V_{gl} (I_{gl} = +0.3 μA) = max. -1.3 V
R_{glk} = max. 0.7 MΩ
R_{glk} = max. 0.5 MΩ
R_{fk} = max. 5000 Ω
V_{fkw} = max. 100 V

1) Bij automatische neg. roosterspanning.
2) Bij vaste neg. roosterspanning.
3) Gelijkspanning of effectieve waarde van de wisselspanning.

TOEPASSING

Daar deze buis vrijwel uitsluitend in balansschakelingen wordt toegepast, zullen hier uitsluitend de met de EL 50 in dit soort schakelingen bereikbare resultaten worden behandeld.

Daarbij wordt verschil gemaakt tusschen schakelingen met vaste negatieve roosterspanning, die door een afzonderlijke gelijkrichter wordt geleverd en schakelingen met automatische negatieve roosterspanning. In het laatste geval behoefte geen afzonderlijke gelijkrichter te worden toegepast, waar tegenover het nadeel staat, dat het maximum vermogen, dat kan worden geleverd, doorgaans lager is dan bij vaste negatieve roosterspanning. Dit nadeel is des te groter, naarmate de anodespanning hooger is. Daarom zal men, ter verkrijging van zeer groote vermogens, zooals van 50 of zelfs 80 W, ervan moeten afzien, automatische negatieve roosterspanning toe te passen. Dit kan als volgt worden verklaard:

186
Het hoogste rendement, dus het grootste geleverde vermogen, wordt bij de zoogenaamde balansschakeling klasse A/B of, in nog sterkere mate, bij de klasse B instelling verkregen. Hierbij werken de buizen in de onderste bocht van de I_0/V_f karakteristiek, zodat de gemiddelde anodestroom met de grootte van het signaal varieert. Bij toepassing van automatische negatieve roosterspanning met behulp van een kathodeweerstand varieert deze negatieve roosterspanning dus eveneens. Om nu bij het maximum geleverde vermogen de bijbehorende negatieve roosterspanning niet te overschrijden, zou men bij een signaal gelijk aan nul moeten uitgaan van een instelling op een geringere negatieve roosterspanning. Het blijkt dan echter, dat de hierbij vloeiende ruststroom, die van de grootte van den kathodeweerstand afhankelijk is, in verband met de maximum anodendissipatie, ontolelaatbaar hoog wordt. Gaat men daarentegen uit van de toelaatbare instelling bij een signaal gelijk aan nul, dan neemt de negatieve roosterspanning tegelijk met het signaal zoo sterk toe, dat onderbrekingen in den anodestroom ontstaan, nog vóór de buis volledig gemoduleerd is.

Het maximum vermogen, dat kan worden geleverd, wordt dan niet bereikt door het op- trekken van roosterstroom, maar door de vervorming van den anodestroom. Dit nadeel is des te storender, naarmate men de begininstelling door toepassing van een hogere anodespanning lager kiest. Dientengevolge komt automatische negatieve roosterspanning bij anodespanningen van meer dan 400 V praktisch niet in aanmerking.

Als in den balanseindtrap automatische negatieve roosterspanning wordt toegepast, moet de begininstelling bij een signaal gelijk aan nul zoodanig worden gekozen, dat de maximum anodendissipatie wordt bereikt. Bij een anodespanning van 400 V worden de beide buizen dus zoodanig ingesteld, dat de totale anodestroom 90 mA bedraagt. De buizen kunnen nu zoo diep worden gemoduleerd, dat de negatieve roosterspanning de toelaatbare grenzen niet overschrijdt.

De anodestroomamplituden zijn veel kleiner dan bij een vaste negatieve roosterspanning, zodat in de anodeketen een grootere impedantie kan worden opgenomen, zonder dat de anodespanning te laag wordt. Op deze wijze wordt het geleverde vermogen niet zoo sterk vermindert als anders het geval zou zijn. De dynamische steilheid wordt, echter als gevolg, van den grooten weerstand in de anodeketen verminderd, zodat men bij automatische negatieve roosterspanning vrijwel de geheele roosterruimte voor maximum modulatie van de buizen noodig heeft. Bij een anodespanning van 400 V, vaste negatieve roosterspanning en een anodeimpedantie van 5000 Ω wordt een vermogen van 50 W geleverd; bij automatische negatieve roosterspanning en een anodeimpedantie van 9000 Ω is dit vermogen 30 W. In beide gevallen bedraagt de vereiste roosterwisselspanning ca. 25 V.

Automatische negatieve roosterspanning

Indien de anodespanning niet hoger is dan 400 V, kan de schermmroosterspanning rechtstreeks van het voedinggedeelte worden afgenomen. De maximum waarde van de schermmroosterspanning bedraagt namelijk 425 V. Houdt men rekening met een spanningval van 25 V in den luidprekertransformatoer (*), dan moet dus een gelijkrichterschakeling worden toegepast, die een spanning van 425 V kan leveren.

In fig. 6 zijn de vervorming, de anodestroom en de schermmroosterstroom als functie van het geleverde vermogen bij deze waarden uitgezet. Behalve de totale vervorming, is ook de vervorming door de verschillende harmonische afzonderlijk gemeten. Voor het uitgangsvermogen is het door de buizen zelf geleverde vermogen aangenoem. In de praktijk moet deze waarde dus worden verminderd met de verliezen in den uitgangstransformatoer. Uit de krommen blijkt, dat de vervorming tot een vermogen van 27 W gering blijft ($d_{tot} = 2,6\%$). De vervorming neemt boven deze waarde sterk toe en bereikt een waarde van ca. 10%, bij een geleverd vermogen van 30 W.

Zoals reeds is vermeld, wordt door de negatieve roosterspanning een grens gesteld aan het geleverde vermogen. Uit fig. 6 blijkt, dat, bij een geleverd vermogen van 30 W, de gemiddelde anodestroom in totaal 105 mA en de schermmroosterstroom 38 mA bedraagt.

*) Deze benaderende waarde is op de volgende wijze berekend: De aanpassingsimpedantie van de primaire van den luidprekertransformatoer is doorgaans in de orde van grootte van 10 000 Ω. Stelt men de verliezen in de wikkeling van den transformatoer op 10% van het geleverde vermogen, dan bedraagt de totale verliezeerstand 1000Ω bedragen. Doorgaans verdeelt men deze erstand gelijkmatig over de primaire en de secundaire wikkeling, zodat de verliezeerstand van de primaire 500 Ω bedraagt, betegeten ten minste met één helft van de wikkeling overeenkomt daar de stroom beurtelings door de beide helften van den transformatoer vloei. Bedraagt de stroom van één buis nu ge- middeld 50 mA, dan zal in de wikkeling van den transformatoer een spanningval van 25 V ontstaan.

187
Bij toepassing van een kathodeweerstand van 315 Ω wordt dus een negatieve roosterspanning van 45 V opgewekt. Deze spanning is voldoende, om den anode stroom te onderdrukken. Bij een nog diepere modulatie van de buizen zouden beide op bepaalde ogenblikken geen stroom opnemen; de luidsprekerstroom wordt dan afwisselend onderbroken. De sterke toename van de 5e harmonische in fig. 6 wijst reeds hierop. Dit soort vervorming is zeer storend en beperkt het maximum uitgangsvermogen even sterk als het optreden van roosterspanning.

Vaste negatieve roosterspanning

De toepassing van vaste negatieve roosterspanning biedt pas voordeel, als de anodespanning ten minste 400 V bedraagt. Terwijl bij automatische negatieve roosterspanning volgens fig. 6 een vermogen van 30 W kan worden geleverd, bedraagt dit thans 50 W bij deze anodespanning.

De gegevens voor toepassing van de huis EL 50 in balansschakeling klasse A/B met vaste negatieve roosterspanning zijn op blz. 180 vermeld. In fig. 7 zijn de anode- en schermoosterstroom en de vervorming voor $V_a = 400$ V als functie van het geleverde vermogen uitgezet. De gunstigste negatieve roosterspanning bedraagt -35 V; de gunstigste aanpassingsimpedantie tusschen beide anoden is dan 5000 Ω. Bij maximum modulatie wordt een vermogen van 50 W bij een totale vervorming van 3,4% geleverd. Daarbij loopt de schermoosterstroom op tot een waarde, die met het oog op de maximum toelaatbare schermoosterdissipatie nog juist toelaatbaar is. Het verband tusschen het maximum te leveren vermogen en de gunstigste aanpassingsimpedantie bij een bepaalde instelling wordt door fig. 8 gegeven.

Voor andere anodespanningen dan 400 V geeft fig. 11 de voornaamste gegevens. Bij spanningen boven 400 V moet de schermoosterstroom door een potentiometer tot de maximum toelaatbare waarde van 400 V worden vermindert. Ten gevolge van de vergorting van den schermoosterstroom bij modulatie van de buizen, zal de voedingsspanning door den eigen weerstand van een dergelijk potentiometer afnemen. Hierdoor wordt het maximum vermogen begrensd. Deze begrenzing is des te sterker, naarmate de anodespanning hooger is. Bij een hoogere anodespanning is het daarom gewenscht, de schermoosterspanningen door bijzondere maatregelen zoo constant mogelijk te houden. Dit blijkt duidelijk uit de getallen, die voor een anodespanning van 800 V gelden. Bij modulatie van de eind-
buizen tot aan het optreden van roosterstroom toe, kan bij deze anodespanning een vermogen van 84 W worden geleverd, indien de schermroosterspanning op 400 V constant wordt gehouden, de negatieve roosterspanning — 37,5 V en R_4 16 000 Ω bedraagt. Deze gevallen kunnen aan de krommen van fig. 9 worden ontleend; de totale vervorming, die hierbij optreedt, bedraagt 6,6%. Voedt men de schermroosters daarentegen via een potentiometer, die zelf 40 mA opneemt, dan daalt de schermroosterspanning bij modulatie zodoende, dat het maximum geleverde vermogen ten gevolge van de daarbij optredende verschuiving van de I_a/V_a karakteristiek, slechts 50 W bedraagt. Dit vermogen zou ook bij een anodespanning van 400 V kunnen worden bereikt. Het is daarom noodzakelijk, de schermroosterspanning te stabiliseren. Dit kan bijvoorbeeld geschieden, door de schermroosterspanning via een serie weerstand van 8 000 Ω van de voedingspanning van 800 V af te takken en parallel aan de schermroosters 4 in serie geschakelde stabiliserbuizen 13201 te schakelen. De schermroosterspanning blijft dan voldoende constant op de waarde van 380 V; bij maximum modulatie kan nu een vermogen van 80 W worden geleverd. De bij deze instelling behorende krommen worden in fig. 12 gegeven; deze wijken slechts weinig af van die van fig. 9. In fig. 10 wordt ook voor deze instelling het verband tusschen het maximum geleverde vermogen en de belastingsimpedantie gegeven.

Voeding van den balansversterker

Een balansversterker met automatische negatieve roosterspanning zal minder aanleiding tot moeilijkheden geven, dan een dergelijke versterker met vaste negatieve roosterspanning. De schermroosters worden rechtstreeks door het gelijkrichtgedeelte gevoed en de gemiddelde anodestroom is practisch onafhankelijk van het geleverde vermogen, zoodat aan den gelijkrichter geen bijzondere eisen worden gesteld. Bij een anodespanning van 400 V neemt de eindtrap bij maximum modulatie $105 + 40 = 145$ mA op. Voor dit doel is de gelijkrichtbuis AX 50 geschikt, die een gelijkstroom van 250 mA kan leveren, zoodat hierdoor ook de voorafgaande versterkerbuizen kunnen worden gevoed. Voor eindtrappen met vaste negatieve roosterspanning, waarbij de gemiddelde anode stroom sterk met de amplitude van het signaal varieert, verdient een gelijkrichtschakeling met een zool lang mogelijke invendigen weerstand aanbeveling. Dit geldt in het bijzonder voor de 400/425 V instelling, aangezien de schermroosterspanning zelf dan niet gestabiliseerd is en de anode-zoowel als de schermroosterspanning bij toenemende amplitude van het signaal afnemen. Nu mag de voedingspanning niet van tevoren worden verhoogd, daar de maximum schermroosterspanning dan bij een klein signaal zou worden overgeschreden. De gelijkrichtbuis AX 50 met gasvulling is, dank zij den lagen inwendigen weer-
stand, uitstekend geschikt voor toepassing in het voedinggedeelte, indien althans een aflakfilter zonder buffercondensator wordt gebruikt.

De totale inwendige weerstand wordt dan gelijk aan dien van de smoorespel, vermeerderd met dien van een transformatorhelft. Neemt men aan, dat deze weerstand niet groter is dan 200 Ω, dan zal een toenemen van den totalen stroom van 200 mA een spanningval van 40 V veroorzaken. Uit fig. 11 blijkt, dat in dit geval het maximum vermogen 36 W in plaats van 50 W zal bedragen. Het verdient dan ook aanbeveling, een poging in het werk te stellen, den inwendigen weerstand nog sterker te verlagen. Bij een anodespanning van 800 V en constant gehouden schermroosterspanning, heeft deze inwendige weerstand een spanningval van 30 V ten gevolge, waardoor het maximum geleverde vermogen van 84 W slechts tot 82 W wordt verminderd.

Voor de anodevoeding van den laatstgenoemden eindtrap is de AX 50 niet voldoende, zoodat deze door twee buizen DCG 2/500 moet worden vervangen. Deze buizen hebben de volgende gegevens:

gloeispanning \(V_f = 2,0 \) V,
gloeistroom \(I_f = 4,5 \) A.

Bij dubbelfasige gelijkrichting en een anodewisselspanning van 1050 \(V_{eff} \) bedraagt de maximum gelijkspanning 950 V en de maximum gelijkstroom 300 mA.

De wijze, waarop de schermroosterspanning in dat geval wordt verkregen werd reeds vermeld: 4 in serie geschakelde stabiliserbuizen 13201 worden parallel aan de schermroosters geschakeld. De combinatie van deze 4 buizen geeft over een betrekkelijk groot stroombereik een constante brandspanning van 380 V. De spanningval in den voorschakelweerstand bedraagt dus 420 V. Als men hiervoor een weerstand van 8 000 Ω neemt, moeten de schermroosters en stabiliserbuizen tezamen een stroom van 52 mA opnemen. Bij een

signaal gelijk aan nul bedraagt de totale schermroosterstroom ca. 2 mA, zoodat de stabiliserbuizen de resterende 50 mA moeten verwerken. Bij maximum modulatie nemen de schermroosters een stroom van 38 mA op, in welk geval voor de stabiliserbuizen 14 mA overblijft. De genoemde stroom is nog juist voldoende voor een goede stabilisering.

Voor het opwekken van een vaste negatieve roosterspanning verdient de schakeling van fig. 13 aanbeveling. De voedingsvorm is moet daartoe worden voorzien van een

afzonderlijke wikkeling, die een spanning \(V_{eff} = \frac{V_e}{2} \) levert. Als gelijkrichtbus is de AZ 1 geschikt, waarvan de gloeidraad via een voorschakelweerstand \(R_1 \) parallel aan de gloeidraden van de andere buizen wordt geschakeld. Deze schakeling zal in de praktijk tot geen enkele moeilijkheid aanleiding geven.

![Diagram](image-url)