OUTPUT PENTODE

Output pentode primarily intended for use as line time base output valve in A.C. television receivers.

HEATER

\[V_h = 6.3 \, \text{V} \]
\[I_h = 1.4 \, \text{A} \]

CAPACITANCES

\[C_{1n} = 18 \, \mu\text{F} \]
\[C_{out} = 8.0 \, \mu\text{F} \]
\[C_{a-g1} < 1.2 \, \mu\text{F} \]

CHARACTERISTICS

\[V_a = 275 \, \text{V} \]
\[V_{g2} = 275 \, \text{V} \]
\[I_a = 91 \, \text{mA} \]
\[I_{g2} = 11 \, \text{mA} \]
\[V_{g1} = -9 \, \text{V} \]
\[g_m = 14 \, \text{mA/V} \]
\[\mu_{g1-g2} = 16.5 \]
\[r_a = 20 \, \text{k}\Omega \]

OPERATION AS LINE OUTPUT PENTODE

Circuit Design

To allow for valve spread and for deterioration during life the line output stage should be designed around the following values:—

\[V_a = 90 \, \text{V} \]
\[V_{g2} = 275 \, \text{V} \]
\[I_a = 150 \, \text{mA} \]

For the average new valve the following figures will apply:—

\[V_a = 90 \, \text{V} \]
\[V_{g2} = 275 \, \text{V} \]
\[V_{g1} = -1 \, \text{V} \]
\[I_a = 225 \, \text{mA} \]

Typical Circuit

(See circuit on page 3)

\[V_b = 300 \, \text{V} \]
\[I_a = 64 \, \text{mA} \]
\[I_{g2} = 18 \, \text{mA} \]
\[R_k = 120 \, \Omega \]
\[I_a = 0.8 \, \text{mA} \]

N.B.—Above figures measured under synchronised conditions.

LIMITING VALUES

\[V_{a \ (b) \ max.} = 1.2 \, \text{kV} \]
\[V_a \ max. = 800 \, \text{V} \]
\[v_a \ (pk) \ max. = 8 \, \text{kV} \]
\[V_{g2 \ (b) \ max.} = 800 \, \text{V} \]
\[V_{g2} \ max. = 400 \, \text{V} \]
\[p_a \ max. = 25 \, \text{W} \]
\[p_{g2} \ max. = 8 \, \text{W} \]
\[I_a \ max. = 200 \, \text{mA} \]
\[V_{g1} \ max. \ (I_{g1} = +0.3 \, \mu A) = -1.3 \, \text{V} \]
\[R_{g1-k} \ max. \ (p_a < 25W) = 500 \, \text{k}\Omega \]
\[R_{g1-k} \ max. \ (p_a < 9 \, \text{W}) = 800 \, \text{k}\Omega \]
\[V_{h-k} \ max. = 100 \, \text{V} \]
\[R_{h-k} \ max. = 20 \, \text{k}\Omega \]
CIRCUIT VALUES (see circuit on page 3)

Resistors

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
<th>Wattage</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>47 kΩ</td>
<td>$\frac{1}{2}$ W</td>
<td>20%</td>
</tr>
<tr>
<td>R_2</td>
<td>330 kΩ</td>
<td>$\frac{1}{4}$ W</td>
<td>10%</td>
</tr>
<tr>
<td>R_3</td>
<td>50 kΩ</td>
<td>1 W</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>R_4</td>
<td>680 Ω</td>
<td>$\frac{1}{2}$ W</td>
<td>10%</td>
</tr>
<tr>
<td>R_5</td>
<td>820 kΩ</td>
<td>$\frac{1}{4}$ W</td>
<td>20%</td>
</tr>
<tr>
<td>R_6</td>
<td>120 Ω</td>
<td>1 W</td>
<td>20%</td>
</tr>
<tr>
<td>R_7</td>
<td>500 Ω</td>
<td>4 W</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>R_8</td>
<td>2.2 kΩ</td>
<td>$\frac{1}{4}$ W</td>
<td>20%</td>
</tr>
<tr>
<td>R_9</td>
<td>2.5 kΩ</td>
<td>4 W</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>R_{10}</td>
<td>2.7 kΩ</td>
<td>4 W</td>
<td>20%</td>
</tr>
<tr>
<td>R_{11}</td>
<td>100 Ω</td>
<td>$\frac{1}{4}$ W</td>
<td>20%</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
<th>Tolerance</th>
<th>Wkg. Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>0.1 μF</td>
<td>20%</td>
<td>350 V</td>
</tr>
<tr>
<td>C_2</td>
<td>0.0022 μF</td>
<td>20%</td>
<td>350 V</td>
</tr>
<tr>
<td>C_3</td>
<td>0.01 μF</td>
<td>10%</td>
<td>350 V</td>
</tr>
<tr>
<td>C_4</td>
<td>0.001 μF</td>
<td>10%</td>
<td>350 V</td>
</tr>
<tr>
<td>C_5</td>
<td>0.004–0.006 μF</td>
<td>—</td>
<td>500 V</td>
</tr>
</tbody>
</table>

Transformers

- **T1** Ratio 1 : 3 (step-up into grid circuit)
- **T2** Ratio 4 : 1 primary inductance ≤ 1 H

Deflector Coils

- Resistance: 3 Ω
- Inductance: 6.5 mH

To provide full scan for 9" picture tube ($V_{as}=7 kV$) with peak to peak current swing of 500 mA.

Notes

(i) Synchronising pulses may be applied negatively to the anode or positively to the grid of the EBC33.

(ii) The decoupling components ($R_1 C_1$) in the anode circuit of the EBC33 are necessary only if there is ripple on the H.T. line.

(iii) All potentiometers should be linear components to provide smooth control.
OUTPUT PENTODE

Output pentode primarily intended for use as line time base output valve in A.C. television receivers.

LINE TIME BASE CIRCUIT

OCTAL BASE
EL38

OUTPUT PENTODE
Output pentode primarily intended for use as line time base output valve in A.C. television receivers.

ANOQUE CURRENT AND SCREEN-GRID CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER