La pentode EL183 est un tube à très forte pentétude spécialement pour l'amplification à gain élevé et à large bande. Il peut être utilisé par exemple comme étage final vidéo, oscilloscopes, appareils de mesure, ...

Cathode à chauffage indirect
Branchemet du filament
Tension filament 12,6 6,3 V CC ou CA
Intensité filament 0,3 0,6 Ampère
Capacités interélectrodes (sans blindage externe) :
Capacité d'entrée 13 pF
Capacité de sortie 5,4 pF
Capacité anode-grille n°1 80 µpF max.
Encombrement :
Hauteur maximum (broches comprises) : 67 mm
Diamètre maximum : 22,2 mm
Brochage : 6.N-DD
Position de montage : indifférente

Broches :
N°1 - Connexion interne (1).
N°2 - Grille n°1.
N°3 - Cathode, grille n°3.
N°4 - Filament.
N°5 - Filament.

Broches :
N°6 - Anode.
N°7 - Grille n°2.
N°8 - Connexion interne (1).
N°9 - Point milieu du filament.

Broches de la base, face à l'observateur

MAXIMUM DES LIMITES DES CARACTERISTIQUES
Système des limites moyennes

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension d'anode</td>
<td>250 Volts</td>
</tr>
<tr>
<td>Tension de grille n°2</td>
<td>250 Volts</td>
</tr>
<tr>
<td>Dissipation d'anode</td>
<td>6 Watts max.</td>
</tr>
<tr>
<td>Dissipation de grille n°2</td>
<td>2,2 Watts max.</td>
</tr>
<tr>
<td>Courant de cathode</td>
<td>60 mA max.</td>
</tr>
<tr>
<td>Résistance en circuit de grille n°1</td>
<td>1 MΩ max.</td>
</tr>
<tr>
<td>Tension entre filament et cathode</td>
<td>200 Volts max. (150 V CC + 50 V crête)</td>
</tr>
</tbody>
</table>

(1) - Les broches indiquées "Connexion interne" ne sont pas à utiliser de quelque façon que ce soit.
CARACTÉRISTIQUES NOMINALES

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension d'alimentation</td>
<td>220 volts</td>
</tr>
<tr>
<td>Tension d'anode</td>
<td>150 volts</td>
</tr>
<tr>
<td>Tension de grille n°2</td>
<td>220 volts</td>
</tr>
<tr>
<td>Courant d'anode</td>
<td>40 mA</td>
</tr>
<tr>
<td>Courant de grille n°2</td>
<td>7 mA</td>
</tr>
<tr>
<td>Tension de grille n°1</td>
<td>-2,1 volts</td>
</tr>
<tr>
<td>Pente</td>
<td>25 mA/V</td>
</tr>
<tr>
<td>Résistance interne</td>
<td>20 kΩ</td>
</tr>
<tr>
<td>Coefficient d'amplification G1/G2 env.</td>
<td>40</td>
</tr>
</tbody>
</table>

EXEMPLE D'UTILISATION EN AMPLIFICATEUR VIDEO

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension d'alimentation</td>
<td>220 volts</td>
</tr>
<tr>
<td>Tension de grille n°2</td>
<td>220 volts</td>
</tr>
<tr>
<td>Résistance d'anode</td>
<td>1800 Ω (1)</td>
</tr>
<tr>
<td>Résistance du circuit de cathode</td>
<td>130 Ω (2)</td>
</tr>
<tr>
<td>Courant d'anode au repos</td>
<td>21 mA</td>
</tr>
</tbody>
</table>

(1) - Pour une tension d'alimentation de 220 volts, la résistance du circuit d'anode ne doit pas être inférieure à 1,800 ohms.

(2) - Il est recommandé d'utiliser une polarisation par résistance de cathode.
COURBES DU COURANT D'ANODE EN FONCTION DE LA TENSION D'ANODE

$V_f = 12.6 \text{ V}$
$V_g = 220 \text{ V}$

![Graph showing anode current as a function of anode voltage for various gate voltages.](image-url)
COURBES DU COURANT D'ANODE EN FONCTION
DE LA TENSION DE GRILLE N° 1

\[V_{f} = 12.6 \, \text{V} \]
\[V_{a} = 150 \, \text{V} \]
\[V_{g2} = 220 \, \text{V} \]