

# engineering data service

6HK5 4HK5 3HK5 2HK5

# ADVANCE DATA

## MECHANICAL DATA

| Bulb<br>Base     |          | E7_1.  | Ministure      | $T-5\frac{1}{2}$ Button 7-Pin |
|------------------|----------|--------|----------------|-------------------------------|
| Dase             |          | 771 19 | TITILITA OUT & | DUO COLL   -1 TH              |
| Outline          |          |        |                | 5 <b>-</b> 2                  |
| Basing           |          |        |                | 7 GM                          |
| Cathode          |          |        | Coated         | Unipotential                  |
| ${\tt Mounting}$ | Position |        |                | Any                           |

#### ELECTRICAL DATA

## HEATER CHARACTERISTICS AND RATINGS

| Average          |        |        |              |          |
|------------------|--------|--------|--------------|----------|
| Characteristics  | 2HK5   | 3HK5   | <b>ЦНК</b> 5 | 6нк5     |
| Heater Operation | Series | Series | Series       | Parallel |

| Heater Voltage    | 2.3                | 2.9<br>4501      | 4.0  | 6.31 Volts |
|-------------------|--------------------|------------------|------|------------|
| Heater Current    | 6001               | 450 <sup>1</sup> | 300l | 190 Ma     |
| Heater Warmup Tim | 1e <sup>2</sup> 11 | 11               | •••  | - Sec.     |

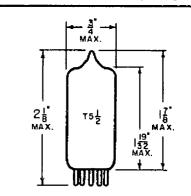
Ratings (Design Maximum Values)4

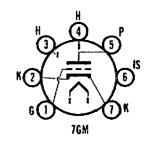
#### Min-Max Min-Max Min-Max Min-Max

| Heater Voltage3                                     | 5.7-6.9 Volts |
|-----------------------------------------------------|---------------|
| Heater Current <sup>3</sup> 560-640 420-480 280-320 | Ma            |
| Maximum Heater-Cathode Voltage                      |               |
| Heater Negative with Respect to Cathode             |               |
| Total DC and Peak 100 100 100                       | 100 Volts     |
| Heater Positive with Respect to Cathode             |               |
| Total DC and Peak 100 100 100                       | 100 Volts     |

# DIRECT INTERELECTRODE CAPACITANCES (Shield No. 316)

| Grid to Plate                | •29 µµf |
|------------------------------|---------|
| Input: g to (h+k+I.S.+E.S.)  | ր•ր հեւ |
| Output: p to (h+k+I.S.+E.S.) | 2.6 µµf |
| Heater to Cathode            | 2•5 դաք |


# RATINGS (Design Maximum Values)4


| Plate Voltage                       | 200 | Volts   | Max. |
|-------------------------------------|-----|---------|------|
| Plate Dissipation                   | 2.3 | Watts   | Max. |
| DC Cathode Current                  | 22  | Ma      | Max. |
| Negative Grid Voltage               | 50  | Volts   | Max. |
| Grid Circuit Resistance (Self Bias) | 1.0 | Megohms | Max. |

NOTE: Control grid to cathode spacing on this type is of such low order of magnitude as to preclude the use of voltage between

# QUICK REFERENCE DATA

The Sylvania Types 2HK5. 3HK5, LHK5 and 6HK5 are frame grid gain controlled triodes designed for use as VHF RF amplifiers at a B+ of 135 volts. Features of the design include: A partial shield between the grid and plate which minimizes the capacitance between these two elements and promotes ease of neutralization; low input capacitance; and higher input impedance by virtue of dual cathode leads.





# SYLVANIA ELECTRONIC TUBES

A Division of Sylvania Electric Products Inc.

# RECEIVING TUBE OPERATIONS EMPORIUM, PA.

Propared and Released By The TECHNICAL PUBLICATIONS SECTION EMPORIUM, PENNSYLVANLA

> December 21, 1962 Page 1 of 2

#### SYLVANIA

6HK5 4HK5 3HK5 2HK5

# Page 2

these elements of more than 30 volts do or peak ac in commercial tube checkers and shorts indicating devices, particularly where mechanical excitation of the tube is employed.

## CHARACTERISTICS AND TYPICAL OPERATION

Class Al Amplifier

| Plate Voltage                           | 135 Volts    |
|-----------------------------------------|--------------|
| Grid Voltage                            | -1.0 Volts   |
| Plate Current                           | 12.5 Ma      |
| Transconductance                        | 15,000 µmhos |
| Amplification Factor                    | 75           |
| Plate Resistance (approx.)              | 5,000 Ohms   |
| Ec for Gm = 150 \u03c4mhos (approx.)    | -5.0 Volts   |
| Ec for Gm = 1500 μmhos (approx.)        | -2.6 Volts   |
| Input Resistance (200 mc)5              | 600 Ohms     |
| Input Capacitance (200 mc) <sup>5</sup> | 9.0 mit      |
| Noise Figure (200 mc) <sup>6</sup>      | 4.2 db       |

#### NOTES:

- 1. For series/parallel operation of heaters, equipment should be designed that at normal supply voltage bogey tubes will operate at this value of heater current/voltage.
- 2. Heater warm-up time is defined as the time required for the voltage across the heater to reach 80% of the rated heater voltage after applying four (4) times rated heater voltage to a circuit consisting of the tube heater in series with a resistance equal to three (3) times the rated heater voltage divided by the rated heater current.
- 3. Heater voltage supply variations shall be restricted to maintain heater voltage/current within the specified values.
- 4. Design Maximum Ratings are limiting values of operating and environmental conditions applicable to a bogey electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

The equipment manufacturer should design so that initially and throughout life no design maximum value for the intended service is exceeded with a bogey tube under the worst probable operation conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

- 5. Measured under grounded plate conditions.
- 6. Optimized neutralized triode RF amplifier stage, noise matched.